J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 9, No. 2 (2022), pp. 153-164

ISSN (Online): 2582-5461

ISSN (Print): 2319-1023

SOME REMARKS ON GENERALIZED SUMMABILITY USING DIFFERENCE OPERATORS ON NEUTROSOPHIC NORMED SPACES

Archana Sharma and Vijay Kumar

Department of Mathematics, Chandigarh University, Mohali, Punjab, INDIA

E-mail: dr.archanasharma1022@gmail.com, kaushikvjy@gmail.com

(Received: Apr. 12, 2022 Accepted: Jun. 05, 2022 Published: Jun. 30, 2022)

Abstract: For the *m*th difference operator \triangle^m and the admissible ideal $\mathcal{I} \subseteq \mathcal{P}(\mathbb{N})$, the purpose of this paper is to introduce generalized summability methods: $\triangle^m(\mathcal{I}_{\mathcal{N}})$ —convergence and $\triangle^m(\mathcal{I}_{\mathcal{N}}^*)$ —convergence in neutrosophic normed spaces (briefly known as NNS). We develop some basics properties of these notions and find condition on \mathcal{I} for which two methods of summability coincides. Finally, we define $\triangle^m(\mathcal{I}_{\mathcal{N}})$ —Cauchy sequences in NNS and obtain the Cauchy-convergence criteria in these spaces.

Keywords and Phrases: Neutrosophic normed spaces, statistical convergence, statistical Cauchy, \mathcal{I} -convergence and \mathcal{I} -Cauchy sequences.

2020 Mathematics Subject Classification: 46S40, 11B39, 03E72, 40G15.

1. Introduction

Statistical convergence as a generalization of usual convergence was introduced by H. Fast [7] and I. J. Schoenberg [24] independently and further developed in [4], [8], [10] and [22] etc. A sequence (x_k) of numbers is said to be statistical convergent to a number L if for each $\varepsilon > 0$, $\lim_n \frac{1}{n} |\{k \le n : |x_k - L| \ge \varepsilon\}| = 0$. For any set $K \subseteq \mathbb{N}$, the natural density of K is denoted by $\delta(K)$ and is defined by $\lim_n \frac{1}{n} |\{k \le n : k \in K\}|$. Using density, a sequence (x_k) of numbers is said to be statistical convergence to a number L if for each $\varepsilon > 0$, $\delta(K_{\varepsilon}) = 0$, where $K_{\varepsilon} = \{k \le n : |x_k - L| \ge \varepsilon\} \subseteq \mathbb{N}$. The idea is generalized by Kostyrko et